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Abstract. The fluctuation contribution to the thennopower above the superconducting transition 
temperature Tc is calculated including all leading p-h asymmetric corrections. A fluctuation 
term is obtained which produces a peak in the thermopower 81 T, in the dirty limit. The result 
is compared to Some =cent experiments on the high-T, superconductors. 

1. Introduction 

Due to their very short intrinsic correlation length, the high-Tccopper oxide superconductors 
have demonstrated fluctuation effects in a much wider temperature range above Tc [l]. 
Among various fluctuation effects studied, the thermopower showed behaviour which was 
not well described by the previously published theory [Z, 3,4]. The correction to the normal- 
state diffusion thermopower due to superconducting fluctuations above T, was studied 
theoretically by Maki using the time-dependent Ginzburg-Landau theory and shown to be 
dominated by the paraconductivity in all dimensions, resulting in a decrease in magnitude of 
the thermopower towards zero at T, [2 ] .  This prediction could not be experimentally verified 
for many years, due to the very narrow region of observable fluctuation effect in conventional 
superconductors and the difficulty in maintaining a tiny  and precise temperature difference 
across a sample. Recently, by measuring the thermopower of YBaZCu3q-J with a high- 
temperature resolution'near the superconducting T,, Howson eta1 showed that the magnitude 
of the thermopower has a peak at the transition [3,4]. This experimental result motivated 
us to re-examine Maki's theory. By carrying out a more complete microscopic calculation, 
we have found a new leading fluctuation correction to the normal-state thermopower near 
the T, [51. 

In this paper, our microscopic calculation for the fluctuation thermopower is first 
described. then the result is presented in comparison with Maki's result and with the 
experimental data, and some concluding remarks made at the end. 

2. The microscopic calculation 

Although this study can be generalized to more realistic cases, we limit ourselves here 
to a simple situation: carriers of charge ( -e)  with free-electron-like dispersion interacting 

t Current address: Department of Radiation Oncology, University of Chicago Medical Center, MC 0085, Chicago. 
IL 60637, USA. 
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through a weak BCS attraction (-VO) in the presence of Nimp randomly distributed impurities 
with a potential Ujmp. 

The thermopower S can be generally expressed in terms of the electrical conductivity 
a and the transport coefficient LZ1 [6]: 
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where T is the temperature and L2' is defined by jQ = LZ'E, where jQ is the heat current 
and E is the electric field. In the case of an isotropic (s-wave scattering), which we assume 
for simplicity, the type of vertex correction shown in figure l(a) vanishes and the normal- 
state conductivity is given by un = ne*r/m, where 5 is the impurity scattering relaxation 
time. Within the linear response regime, Lz' is obtained from the retarded correlation 
function K$j of the heat current jQ and the electrical current j: 

where Im denotes the imaginary part. The retarded correlation function is the analytic 
continuation of the corresponding Matsubara correlation function 

where p 5 1/T, ks 5 1, U, = 2mx/p, T is the imaginary-time ( t )  ordering operator, and 
() denotes the thermal average. The current operators, including impurity contribution, can 
be derived from the conservation laws for charge and energy as [7] 

+ P + q k L c k + p + q  (5)  

where ( k  = Ek - p  is the energy measured from the chemical potential p. Rj is the position 
of the jth impurity, and f i  

The main difficulty in evaluating Kje j  is that it vanishes if the system has particle- 
hole ( p h )  symmetry. Its leading contribution therefore arises from numerous small p h  
asymmetric terms [SI. In particular, to the first order in TI@, there are ph asymmetric 
corrections from: (i) the electronic density of states N ( f ) ;  (ii) the momentum k;  (iii) limits 
of the energy integral from (-p) to 00 [9]; and (iv) the impurity scattering self-energy 
E,, and vertex correction r. We included in our calculation, as shown below in more 
detail, all corrections from (i) to (iv). For isotropic U,,,,, the vertex correction shown in 
figure l(a) vanishes in Lz' as in the conductivity a. The vertex corrections which need to 
be taken into account in LZL are the impurity scattering corrections to the j Q  operator as 

1. 
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(a) (b) 
Figure 1. (a) The impurity vertex correction t o o  and L2' which vanishes with isotropic impurity 
scauering and p + 0; (b) impurity vertex corrections for the heat current in L2'. An open circle 
denotes a momentum vertex while a shaded one either a momentum or a momentum-energy 
venex. 

shown in figure l(b) [IO]. These corrections amount to replacing (& + &+q) in the heat 

With the above considerations, we have obtained Lz' for the model system in the normal 
CWent vertex by [h + Cim,,(4 + 5k+g + Cim,,(o + v)l. 

state (where the superconducting fluctuation is negligible): 

which, together with the normal-state conductivity an = n e 2 z / m ,  gives the same free- 
electron thermopower s,, = ( l /T)L; ' /an  as the Boltzmann equation result [ I l l :  

9 T  
3eu 

s n -  (7) 

As T approaches Tc, the fluctuation becomes more and more important. The 
thermopower can then be expressed as 

where the subscript f l  indicates the fluctuation contributions. The behaviour of of, has been 
extensively studied and is well understood both experimentally and theoretically [12]. For 
T sufficiently close to Tc and with certain amount of pair-breaking, a j ~  is dominated by the 
Aslamazov-Larkin (A-L) contributions, which diverge as where E = (T - T,)/T, 
[13]. In three dimensions (d = 3), it has the form 

where ((0) is the superconducting correlation length at T = 0. 
Our goal is to ,study the behaviour of L;! with all p-h asymmetric corrections included 

to the first order in TI@. We first examine the A-L contribution to L$ shown in figure 2(a) 
since it is dominant in the presence of pair-breaking. The remaining contributions in @) 
and (c) will be considered later. The contribution of figure 2(a) can be expressed as 
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(a) (4 (C) 

Figure 2. The fluctuation diagrams for L*'.. The shaded triangles are the impurity vertex 
corrections T's. A filled circle denotes a momenrum-energy venex. 

where t(Q, iQ) is the r-matrix for~the Cooper pair scattering. The t-matrix has been 
calculated by Ebisawa and Fukuyama to the first order in T/p 1141 

( 1 1 )  
1 

t(Q. iQl) = - 
N(O)IE + (ir/8T)11 + ihS21/lS2llllS2ll +irDQ2/STl  

where the diffusion constant D = fvgr and the p h  asymmetric correction is given by 

where " (0 )  is the derivative of the density of states at the Fermi level. The vertex functions 
in equation (10) are 

x Go(-k + Q, -io, + iQ)r(ion; -iw, + iR1) 

x r(iw. + iu,; -io, +in() (14) 

where the single-electron Green's function G&, io,) = [io, -(k - Ztmp(iwn)]-l, and the 
r is the impurity vertex correction at each end of a t-matrix, whose Q-dependence is of 
higher order and is thus neglected in the following. 

The vertex functions K and A are evaluated in the dirty limit ( 1 / T r  >> 1). The p h  
asymmetric corrections are included for d = 3 as follows. The sum over k becomes 
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Canying out the integral for the standard impurity self-energy exactly yields [ 151 

and for the vertex r yields 

Equations (15). (16) and (17), together with 

k=mVF I + -  (18) c 
are used in evaluations of Ti and A. 

-. 

The result of somewhat lengthy calculation of and A, to the first order in T / p ,  is [5] 

- lrmN(0)u;r lrmN (0) U$ 
A(Q, in,; 0, ium) = - Q(2iinl + ivm) - Q-Ti,+Az (19) 

3T 6Trw 
nmN(O)u$r 

3T Q. A(Q, in,; 0, ium) = - 

All p h  asymmetric corrections in A are of the form S21/p or vm/p and vanish as T + T, 
and U -+ 0; thus only the leading term (p-h symmetric) is shown in equation (20), which 
would yield the A-L result uf1.1.~~. The heat-current vertex in (19), on the other hand, 
has a non-negligible p h  asymmetric term hz besides the p-h symmetric h,. In Maki's 
calculation [2]. only h, was used and p-h'asymmetry came only from the t-matrices (as 
shown in equations (11) and (12)), which resulted in L;;,AL c( E ( ~ - ~ ) / ~  and implies a 
decrease in magnitude of S as T --t Tc. In the present calculation, since U + 0 and C2 + E 

after the analytic continuation, we find that >> as T -+ T,. Therefore, the dominant 
contribution near T, arises from & instead of TI. 

To calculate Ljf,,, due to Kz. we note that 

Inserting equation (21) into equation (IO), and comparing it to the expression for U ~ ~ , A L  

1131, one can immediately write down the result for L $ A L :  

with u,-~,AL given by equation (9). As T -+ T,, L $ A L  diverges as dd-4)/2, in the same 
way as U ~ ~ . A L  does. 

Equation (22) was derived in the above for the A-L diagram in figure 2(a). We have also 
studied other fluctuation diagrams in figure 2 for their contribution to L;i,AL. Figure 2(b) 
is referred to as Maki diagram, and is the leading term in uf, in the case of vanishing 
pair-breaking interaction 1161. In the dirty limit, we have derived an expression identical 
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to equation (22) for the Maki diagram, and a similar expression but with a positive sign 
on the right-hand side for figure 2(c). Therefore, L:: is related to uf, as in equation (22) 
regardless of whether the A-L diagram or the Maki diagram is more important. 

The divergence of L;f due to & given by equation (22) results in an increase in 
magnitude of S as T approaches T,. From equations (8) and (22)  

Y Lu and B R Patton 

Equation (23) results from an expansion in terms of the small quantity u,1/un, which is 
implied by the perturbative nature of the fluctuation theory. In equation (23), the second 
(negative) term arises from the fluctuation contribution to U and the third (positive) one from 
the fluctuation contribution to Lzl.  In the dirty limit, when 1 jTT > 2 z j a  is satisfied, 
the third term in equation (23) dominates the second one and increases the magnitude of S .  
The increase becomes steeper as the system becomes dirtier. 

3. Discussion 

In the calculation by Maki 121, the contribution to L;; came from the p-h asymmetly 
in the fluctuation propagators-t-matrices. In the present calculation, a large fluctuation 
contribution is obtained from the p h  asymmetry in the triangle momentum-energy vertex, 
which consists of single-electron Green's functions. One may view the former result as the 
thermopower of superconducting fluctuation pairs, and the latter result as the thermopower 
of the normal electrons with an enhancement caused by the propagation of superconducting 
fluctuations. The present calculation shows that the enhanced normal electron contribution 
to the thermopower is more important than the Cooper pair contribution at temperatures 
near Tc. 

For quantitative comparison with the peak in S observed experimentally by Howson et 
al, we use Ljf,,, for d = 3 

where ~ ( x )  is the Riemann zeta function, to fit the experimental data. For a layered structure, 
p ( O )  in equation (24) should be replaced by &O)&(O). As shown in figure 3, the power 
law (e-'/z) in equation (24) describes well the temperature dependence over a decade of 
temperatures. Using the experimental values <(O) = 30 A, z;(O) = 10 A and Tc = 92.6 K, 
we get T T  = 0.1 which is reasonable for YBaZCu.O-,. 

Even though our calculation is carried out for dirty metals for d = 3, the general 
result should qualitatively apply to other dimensions or to clean metals, as follows from 
the following symmetry argument. As q + 0 and v, + 0, the general expression of h in 
equation (13) vanishes by symmetry for Q = 0; for Q # 0, k only vanishes by symmetry 
if Q = 0 nnd p h  symmetry is assumed. This indicates that is proportional to Q but 
not to S2, as long as p-h asymmetry is present. Therefore in general, besides a term like 
A , ,  there should also be a term like h 2  as introduced in equation (19). The term xz .is 
proportional to Q only and gives a more divergent contribution to L:; near than does 
A i .  

- 

- 
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Figure 3. The linear dependence of -So on €-'Iz near T,. The solid line 
to the experimental data 131 obtained using equation (24)., 

is the theoretical fit 

4. summary 

We have calculated the fluctuation thermopower near the superconducting transition from the 
lowest-order fluctuation diagrams and found a new leading contribution corresponding to the 
fluctuation-enhanced normal electron thermopower. In the dirty limit, this new contribution 
produces a peak in the thermopower which agrees quantitatively with the experimental data. 
We note that our theory is for T approaching T, from above, and further study is necessary 
for the fluctuation effect on thermopower below T,. 
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Note added in prosf: While this work has been edited for publication. a paper by Varlamov and Livanov [ 171 was 
published which showed a clelm-limit result similar to equation (23) of the present work. In  contrast to 1171, the 
present work is for the theoretically more challenging dirty linrit--an extremely difficult problem as described by 
the authors of [17]-md is presumably more relevanr to the high-Tc superconductors as T approaches Tc. 

References 

[i]  For a review, see 

P 166 
lye Y 1989 Swdies <#High Temperuture Supemmducnm vol I. ed A V Narlikar (New York Nova Science) 



9254 Y Lu and B R Patton 

[2] Maki K 1974 3. Low Temp. Phys. 14 419 
(31 Howson M A, Salmon M B, Friedmannn TA,  lnderhees S E, Rice J P, Ginzburg D M and Ghiron K M 

1989 I .  Phys.: Condens. Mutter 1465  
Howson M A. Salamon M B, F r i e d m u  7 A. Rice J P and Ginzburg D M 1990 Phys. Rev. B 41 300 

141 Lowe A J, Regan S E and Hawson M A 1992 3. Phys.: Condens. Mutter 4 8843 
[5] Lu Y 1990 PhD Thpsis Ohia Slue University 
[6] For example. see 

Ashcroft N W and Mermin N D 1916 Solid Sate Physicr (Philadelphia. PA Holt, Rinehm and Winston) 
p 257 

[7] To the lowest order in superconducting fluctuation. the BCS intemction contribution to j Q  does not need to 
be included. 

[8] For example. see the discussion in 
M a n  G D 1981 Many-purricle Phy.9ic.s (New York Plenum) p 664 

[9] For free elecuons with impurity scattning, the inlegnl overt from -m to -fi contributes. to h e  first order 
of T I w .  only in evaluating Re 2jmp. which is needed for the impurity correction of the momentumenergy 
vertex. 

[IO] Vilenkin A and Taylor P L 1918 Phys. Rev. B 18 5280 and references therein 
[I  11 Mou N F and Jones H 1936 Theory of the Pn?perties rfMemL undAl1oy.s (Oxford: Clarendon) p 3 I1 
[I21 For a review. see 

Tinkhnm M I975 Introduction to Superconductiviry (New York: Mffiraw-Hill) P 230 
[I31 Aslammm L G and Larkin A I I968 Phys. Lett. 26A 238 
[I41 EbirawaH and Fukuyama H 1971 Prog. Theor. Phyr. 46 1042 

(We found that the second term in the square brackets in A was left out in their calculation.) 
[IS] The integntion over 6 can be cmied oqwi th  the exact limits: from -w to m. by utilizing the cut of Ihe 

along the real axis on the complex $-plane. One can always have the quare-root function 
function in the integrand by making I = -Cl + and then expanding ( I  + c/p)-1/2.  

[I61 
[In 

Panon B R I911 Phys. Rev. Lett. 27 1273 
Varlamov A A and Livanov D V 1990 zh Ekrp. nor. Fir. 98 (Engl. Transl. I990 So”. Phys.JETP 71 325) 


